TESI MAGISTRALI

Professoressa Signorini Maria Gabriella

mariagabriella.signorini@polimi.it

Laboratorio: B3Lab
             

Aim of the project is to develop and apply novel measures inspired to network analysis theory to evaluate EEG functional connectivity in newborns and the ability of such techniques in predicting maturation and neurocognitive performances later in life.
This series of projects profits from the unique opportunity of a database encompassing more than 300 newborns recordings, collected at Morgan Stanley Children’s Hospital of New York. The EEG traces were collected at multiple time points (e.g., birth, 1-month, and 6-months of age) along with neurocognitive assessments
General Requirements
• Programming skills in MATLAB environment
• Basic knowledge of signal processing methods
• Good language skills in English

Contacts:

stefania.coelli@polimi.it ;
nicolo.pini@polimi.it ;
annamaria.bianchi@polimi.it ;
mariagabriella.signorini@polimi.it

Professoressa De Momi Elena

elena.demomi@polimi.it

Laboratorio: Near lab
             

Per un elenco completo delle tesi disponibili si rimanda alla sezione dedicata sul sito del laboratorio:

https://nearlab.polimi.it/medical/available-master-thesis/

Professoressa Pedrocchi Alessandra

alessandra.pedrocchi@polimi.it

Laboratorio: Near lab

Per un elenco completo delle tesi disponibili si rimanda alla sezione dedicata sul sito del laboratorio:

https://nearlab.polimi.it/neuroengineering/available-master-thesis/

Professor Mainardi Luca

luca.mainardi@polimi.it

Laboratorio: SPINLabS

The research aims at developing methods and algorithms for the
analysis of cardiovascular signals recorded through
non-intrusive devices (smart-watch, wristband devices, etc?)

Application fields:
– Arrhythmia monitoring and classification
– Risk stratification
– Fibrillation (AFib) detection and characterization

The research aims at developing technologies and method for
the measurement of physiological parameters (PPG, HRV and
respiration) using contactless, video-based recordings

Application fields:
– Risk stratification in general population
– Stress quantification
– Neuromarketing

The aim is to simulate the PPG signal during different rhythms (AF, sinus rhythm and other arrhythmias) and to develop new methods to detect the inter-beat intervals. To test the developed method on real PPG data of patients in the
various rhythms.

Data: PPG signals to be simulated (using the model by Solos?enko et al.) and 5-minute real PPG recordings of patients in various rhythms.

Collaborazioni: Lund University; Kaunas University of technology

The aim is to characterize the AV node properties of patients with paroxysmal,
persistent and permanent AF

Data: 5-minute ECG recordings of more than 2000 patients with paroxysmal, persistent and permanent AF part of the Swiss-AF project

Collaborazioni: Swissaf(Swiss Atrial Fibrillation Cohort); Cardiocentroticino

The aim is to characterize the P wave morphology in patients with Brugada syndrome using multi-lead ECG

Data: 10-minute body surface potential mapping ECG recordings of 90 patients with Brugada syndrome, atrial fibrillation and normal sinus rhythm

collaborazione: Universitat Politecnica de Valencia

The aim is to extract Radiomics features from HN lesions and to derive early predictors of the overall survival.

Data: Hundreds of lesions of HN tumors and lymphonode collected during the H2020 Project BD2DEcide

Collaborazioni: BD2DECIDE

The aim is to develop machine learning methods to combine Radiomics and genomic data

Data: Head an Neck lesions concerning tumors and lymphnodes collected since 2004.

Collaborazione: Fondazione IRCCS Istituto Nazionale dei Tumori

The aim is to develop a framework able to highlights these differences on DTI derived maps and their relation with the RT plan on pediatric patients.

Data: 20 pediatric patients undergoing 2 DTI acquisitions (before and after the RT)

Collaborazioni: Fondazione IRCCS Istituto Nazionale dei Tumori; AIRC (Associazione Italiana per la ricerca sul cancro)

The aim is to analyze ventricular Intramyocardial septal Potential using ablation and mapping catheter with a 3D Mapping system

Data: Hundreds of potential coming from catheter in Ventricular ablation procedure

Collaborazioni: Ospedale San Raffaele; Biosense Webster

Collaborazioni:Centro Cardiologico Monzino; Biosense Webster

to analyze ventricular Intramyocardial septal Potential using ablation and mapping catheter with a 3D Mapping system

Data: Hundreds of potential coming from catheter in Ventricular ablation procedure

Collaborazioni: Ospedale San Raffaele; Biosense Webster

Collaborazioni:Centro Cardiologico Monzino; Biosense Webster

Professor Bassi Andrea

andrea1.bassi@polimi.it

Being able to spatially resolve micrometric structures becomes a primary need when studying complex biological tissues. This analysis is required by a variety of applications, for example imaging neurons in a network. It is particularly important to obtain subcellular resolution over a volume as wide as possible so to have a picture of the phenomena on a systemic scale. Fluorescence microscopy allows acquiring volumetric imaging of cells and tissues over several millimetre volumes at high spatial resolution.
The student will contribute to setup a new microscopy method, based on Light Sheet Fluorescence Microscopy (LSFM), which is paired with the computational tool of compressive sensing and machine learning for the reconstruction of the entire sample upon volumetric patterned excitation.
The aim of the thesis is the development of an acquisition and processing method, based on structured illumination, which will be used to study millimetre to centimetre scaled biological tissues and samples. Of particular interest will be the study of entire murine brains.

The student will be firstly trained, and then deeply involved in all the stages of the instrumental development, including i) the design and realization of the optical components ii) the automation and control of hardware parts and iii) the acquisition and analysis of images (which will be performed using Python).
Besides all this, she/he will join an interactive, multidisciplinary and international environment, formed by young and experienced researchers.
Basic knowledge of at least one programming language (Java, C++, Python or Matlab) is required: specific training on Python will be given at the beginning of the thesis. Good English, spoken and written are required.
The typical duration of the thesis is 8-10 months.

Defining the 3D organization of cancer-associated chromatin domains would represent a new frontier to decipher tumor heterogeneity. Currently, there are no available techniques that can rapidly analyze thousands of cells and their sub-cellular structure, as required for medical diagnosis.
For this reason, we aim to develop a new kind of high-throughput super-resolution microscope that is fully integrated in a microfluidic chip and that can reach resolution beyond the diffraction limit (<200nm).
In particular, the new microscope will be based on structured illumination where a two-dimensional periodic interference pattern illuminates the fluorescent sample at different orientations. In this way, 3D super-resolved sample reconstructions are achieved.
Reaching this goal not only will demonstrate that super-resolution microscopes, that nowadays only few laboratories could afford, can be integrated in low-cost lab-on-chip, but will represent a breakthrough in medicine, since will bring to the identification of those genetic modifications characterizing a specific subset of cancer and its responsiveness to particular treatments.
This thesis proposal is part of the ProChip project (https://pro-chip.eu/), that has been granted a 2,5€ million from the Horizon 2020 program, and will be carried out by an international consortium of six organizations, including, Politecnico di Milano, Consiglio Nazionale deel Ricerche, Imperial College London, National Institute of Applied Sciences (INSA) Lyon, University of Trento and the company Elvesys in Paris.

The student will be firstly trained, and then deeply involved in all the stages of the instrumental development, including i) the design and realization of the optical components ii) the automation and control of hardware parts and iii) the acquisition and analysis of images (which will be performed using Python).
Besides all this, she/he will join an interactive, multidisciplinary and international environment, formed by young and experienced researchers.
Basic knowledge of at least one programming language (Java, C++, Python or Matlab) is required: specific training on Python will be given at the beginning of the thesis. Good English, spoken and written are required.
The typical duration of the thesis is 8-10 months.

Si tratta di un lavoro sperimentale che consiste nella caratterizzazione meccanica mediante prove di trazione biassiale di membrane costituite da uno strato in microfibra di seta ed uno strato in nanofibra. Il lavoro è in collaborazione con una azienda lombarda

Objective of the Thesis is the design and development of an integrated platform to merge and manage data from outcomes measured with clinial tests (such as laboratory tests, medical imaging, ECG, etc) and data from measurements acquired with commercial wearable sensors (such as wristband sensors used for fitness tracking). The purpose is to design such integrated platform to monitor the health status in non-critical patients with chronic diseases and to provide the patient with a detailed and user-friendly journal of his/her health status and the attending doctor a detailed tracking of the patient health status 24 h a day. For the doctor, the platform will provide information useful to assess the fitness/wellness level of the patient and how the daily habits of the patient and the assigned treatment plan influence each other.

Persona di riferimento: Prof. Gabriella Tognola (gabriella.tognola@polimi.it; tel. 3388; Edificio 21)
Collaborazioni con partner esterni: Medas Solutions (Milano, technical partner)

Background: Meniere disease is a disorder of the inner ear that causes severe and debilitating vertigo, hearing loss, and fullness or congestion in the ear. It affects approximately 12 out of every 1,000 people, from 20 to 60 years.
The problem: Although the cause of Meniere disease is well known (buildup of fluid in the labyrinth), no definite answers are available on the many reasons why only some people develop the disease; the treatment options are many , inlcuding medications, surgery, pressure treatments, but the clinical efficacy of these options is not the same for all patients, as it highly depends on the accuracy with which the etiology of the disease has been determined for each single case.
The proposed solution: Objectives of the Thesis are: 1) To develop an automated procedure for clinical text analytics based on Information Extraction able to identify, extract and organize clinical information from the textual medical records that may explain the etiology of the disease (past and present symptoms, medical evidences, signs, past and present treatments, etc); 2) To develop a Clinical Decision Support system that based on the textual information extracted in (1) and on the quantitive (numerical) data from clinical audiometric tests and medical imaging (CT and MR scans) will support the doctor in the differential diagnosis of the disease; 3) To integrate in the System developed in (2) a treatment module to identify clusters of patients with similar treament outcomes and thus support the doctor in planning the best personalised plan for Meniere disease treatment.

Persona di riferimento: Prof. Gabriella Tognola (gabriella.tognola@polimi.it; tel. 3388; Edificio 21).
Partner/collaborazioni esterne: Policlinico di Milano (clinical partner)

Background: Tinnitus (i.e., ringing in the ears) is a symptom that affects nearly 1 in 5 people and may seriously impact the quality of life of sufferers. A range of options are available to mask or distract from the tinnitus, to manage the psychosocial impacts, reduce stress, or to address common comorbidities such as depression, anxiety and insomnia.
The problem: There is a lack of high-level evidence for the clinical efficacy of these different management options. Also, tinnitus-related variables fluctuate substantially over the day, thus it is important to gather the outcomes of tinnitus clinical management in real life (i.e. not in the laboratory) and in real time (i.e. not a single snap shot).
The proposed solution: Objectives of the Thesis are: (1) to develop an innovative platform for collecting real-life and real-time health data through Ecological Momentary Assessment (EMA), and (2) to analyse those variables using Machine Learning to identify a global measure of the outcomes that include but are not restricted to general health, concomitant medications, hearing status, lifestyle, personality, tinnitus-related beliefs, and treatment outcome expectations.

Persona di riferimento: Prof. Gabriella Tognola (gabriella.tognola@polimi.it; tel. 3388; Edificio 21).
Collaborazioni/partner esterni: Policlinico di Milano (clinical partner); Del Bo Tecnologie per L’Ascolto (Milano, clinical partner); Eriksholm Research Centre (Denmark, technological partner)

Questa attivita’ di tesi si colloca a cavallo tra diverse discipline, ovvero Biomeccanica, Fluidodinamica (alle piccole scale) e Calcolo Scientifico. Esistono diversi possibili progetti che mirano a consolidare, validare e sviluppare ulteriormente, una piattaforma di calcolo (gia disponibile) per la modellistica computazionale della microcircolazione in reti vascolari complesse (100-10000 vasi capillari).

Professor Riccardo Sacco

riccardo.sacco@polimi.it

The title is only to provide a general indication of the subject of the thesis. One application of ion channels is to determine their role in the active secretion of aqueous humor in the ciliary process of the human eye.

The study is carried out in strict collaboration with Prof. Giovanna Guidoboni, University of Missouri, Columbia MO USA.

This thesis aims to study the role of viscoelasticity and of compressibility in the mechanical response of biological tissues with application to the retina in the human eye.

This thesis in carried out in strict collaboration with Prof. Giovanna Guidoboni, University of Missouri, Columbia MO USA.

Professor Valentini Gianluca

gianluca.valentini@polimi.it

La tomografia ottica permette la ricostruzione tridimensionale di organismi di piccola dimensione “in vivo” ed in modo non invasivo. La tecnica può essere applicata a studi di embriogenesi e a studi funzionali, ad esempio dell’apparato circolatorio, in esemplari giovanili di pesci zebra. L’impiego di esemplari allo stato di larva consente di ottenere immagini con risoluzione ottimale e non pone problemi etici.

Professor Giambattista Gruosso

giambattista.gruosso@polimi.it

Laboratorio: Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Scopo della tesi è quello di classificare e analizzare diversi stili di guida al fine di determinare un modello per la previsione di consumi in veicoli elettrici. La classificazione vuole essere fatta misurando alcuni parametri biometrici ricavati sull’esecuzione di cicli guida definiti su un veicolo elettrico.

Per il trattamento dei tumori della mammella è sempre più diffuso l’uso della chemioterapia neoadiuvante, che mira a ridurre la dimensione del tumore prima dell’intervento chirurgico, in modo da renderle l’intervento stesso meno invasivo, o, nei casi migliori, ad eliminare completamente il tumore.
Quasi un paziente su due non risponde alla chemioterapia neoadiuvante, con alta morbilità per il paziente e costi elevati per il sistema sanitario. Nessuna modalità non invasiva è però attualmente disponibile per monitorare l’efficacia o predire la risposta terapeutica. Ci sono però incoraggianti evidenze sperimentali che le tecniche ottiche potrebbero efficacemente svolgere questa funzione.
La tesi verterà sulla finalizzazione dello sviluppo di uno strumento per mammografia ottica che consenta di acquisire mappe della composizione media del tessuto mediante acquisizione continua di dati di trasmittanza risolta in tempo a 7 lunghezze d’onda nel rosso e vicino infrarosso (600-1100 nm). Lo strumento presenterà significative innovazioni a livello tecnico, che mirano ad ottenere misure di qualità elevata in tempi compatibili con una misura clinica. Le prestazioni verranno valutate su fantocci ed in vivo, come passo preliminare allo studio clinico.

Nell’ambito del progetto EU “SOLUS – Smart optical and ultrasound diagnostics of breast cancer” (https://www.solus-project.eu/), stiamo sviluppando un innovativo sistema che combina imaging morfologico a ultrasuoni, elastografia quantitativa e tomografia ottica diffusa, che consentirà un’analisi multiparametrica (morfologia, rigidezza del tel tessuto, contenuto di lipidi, acqua e collagene, volume totale di emoglobina e livello di ossigenazione.. Scopo dell’approccio proposto è migliorare la specificità nella diagnostica non invasiva del tumore della mammella.
A seconda del momento in cui verrà svolta (e cercando di assecondare gli interessi dello studente), la tesi potrà riguardare aspetti diversi, dallo sviluppo del sistema, alla sua caratterizzazione, all’analisi ed interpretazione dei dati, al test in vivo, alla validazione clinica. Maggiori dettagli potranno essere forniti su contatto diretto.

Professoressa Anna M. Bianchi

annamaria.bianchi@polimi.it

Laboratorio: B3Lab 

La percezione del dolore implica l’attivazione di precisi percorsi neurali che coinvolgono i sistema nervoso centrale ed i sistema nervoso periferico. L’analisi dei segnali fisiologici (EEG, ECG, frequenza cardiaca, frequenza respiratoria, risposta cutanea, etc.) consente di determinare indici quantitativi correlati al dolore percepito. Lo studio si propone di studiare come differenti farmaci o protocolli impiegati per l’anestesia e l’analgesia possano modificare i meccanismi di percezione del dolore. Il progetto verra’ svolto in collaborazione con il reparto di anestesia di Humanitas (referente prof. Monzani) ed includera’ pazienti sottoposti ad interventi in day-surgery.

Il progetto verra’ svolto in collaborazione con il reparto di anestesia di Humanitas (referente prof. Monzani) ed includera’ pazienti sottoposti ad interventi in day-surgery.

Sviluppo e validazione di una metodologia per l’analisi automatica ed il follow-up
di radiografie di pazienti con impianto dell’anca al fine di indentificare predittori precoci per l’individuazione di un possibile fallimento dell’impianto. Il lavoro si svolgera’ in collaborazione con il reparto di ortopedia di Humanitas che fornira’ le competenze cliniche ed un vasto data-base di immagini radiografiche.

Professor Andrea Bonarini

andrea.bonarini@polimi.it

Laboratorio: AI & Robotics Lab 

Aims of the thesis, which can have also different, parallel implementations, is to design and develop a robot able to play with people with disabilities (mostly cognitive disabilities), to make them have fun, and at the same time develop some skills and abilities. The design is done in collaboration with therapists and subjects with specific disabilities in order to match their real needs. The final implementation should achieve the mentioned goals, and provide a mean to collect objective data to support the assessment of the effectiveness of the intervention. These kind of robots should be simple and implemented with cheap technology (e.g., Arduino -like) so to match the resources potentially available in care centres. The results of this research could be published on international venues, presented in international exhibitions, and participate to competitions for design for disability aids.

The goal for this thesis is to recognize and classify the activity done by a subject manipulating an object, such as a robotic plush (e.g., a teddy bear). It is interesting to collect objective data about the activity of a subject, possibly affected by disability, which is interacting with the robotic object, which, in turn, can provide feedbacks and propose activities. These objective data could be included in the assessment of the status of the subject and in the evaluation of its progress. This research is done in collaboration with care centres.